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FINAL TECHNICAL REPORT

A. STATEMENT OF THE PROBLEM STUDIED

This research addressed the need for fundamental information concerning halogen etching of -V
semiconductors. The chemical reaction of atomic and molecular halogens with semiconductor
surfaces is the major component of most dry processes employed for device manufacture.
Processes such as reactive ion etching and chemical vapor deposition are most often optimized by
empirically balancing requirements for smooth surfaces and high etch rates, with little knowledge of
the surface chemistry on the microscopic scale. By providing a fundamental understanding of the
relevant surface chemistry, it will be possible to optimize current processes and to design new ones
in a more efficient manner. The information obtained from this research is also critical for the
development of new types of processes, such as atomic layer epitaxy (ALE), that are designed to
produce atomic-scale structures.

We carried out experimental investigations of the reactions of XeF [1-2], Cl, [6-8, 10], and I [3-5,
11] with particular III-V semiconductor surfaces. The research made use of the tools of surface
science to investigate fundamental aspects of a “real” technological problem. We used
synchrotron-based soft x-ray photoelectron spectroscopy (SXPS, collected at the National
Synchrotron Light Source at Brookhaven National Laboratory), low energy electron diffraction
(LEED) and scanning tunneling microscopy (STM) to measure the surface products formed by
reaction under well-controlled conditions. During this time, we also wrote a review article [9] that
reported on the current state of the field. We showed how many techniques can be used together to
solve such surface chemical problems. From these many results, an atomic-level understanding of
halogen/III-V semiconductor reactions is emerging.

B. SUMMARY OF THE MOST IMPORTANT RESULTS

Fluorine is not normally used as an etchant for III-V materials, due to the involatility of group III
metal fluorides. The reaction does have microelectronics applications, however, as it can be used to
grow films of group III fluorides for use as dielectric materials. The room temperature reaction of
XeF, with GaAs produces films of solid GaF3, which is a 10 eV bandgap insulator, while the
excess As is removed from the surface. We investigated the evolution of the
insulator/semiconductor interface with film growth [1] and the effects of surface temperature on the
reaction [2]. It was found that the interface region between the GaF3 film and the substrate consists
of GaF, AsF and tri-coordinate Ga and As atoms. Group III and V elements are stable in tri-
coordinate configurations, which form as bonds break in the near-surface region. The size and
composition of the interface region is independent of the film thickness. Measurements of samples
that were reacted with XeF; at ~600 K, which is above the decomposition temperature of GakF3,
showed that Ga and As are removed stoichiometrically, while a thin film (~1 atomic layer) of
elemental As remains on the surface [2]. These results indicate that the interaction of fluorine with
GaAs is a frustrated etching reaction, which is a consequence of the low volatility of Ga fluorides.

Chlorine is the halogen most widely used in device manufacture. Cl adsorbs dissociatively on III-
V semiconductor surfaces, and can spontaneously etch the substrate under certain conditions. For
reaction with GaAs, we investigated the effects of the initial surface structure [7], substrate
temperature [6], and exposure level [8]. The adsorption pathway is dependent on the clean surface
reconstruction and condition [7]. Ga-rich surfaces are initially more reactive than As-rich surfaces.
The initial adsorption kinetics are described by the Elovich equation, i.e., the sticking coefficient for
Clp decays exponentially with the amount of adsorbed Cl.

Although GaAs surfaces appear to passivate after the initial exposures to Clp at room temperature,
they begin to etch after larger exposures. In the early stages of etching, Ga is preferentially




removed from the surface. The etching reaction ultimately produces volatile AsCl3 and GaCls,
which form through the stepwise addition of Cl. After sufficient Cl; exposure to attain steady-state
etching, the surfaces are terminated by -AsCl-GaCl, “tree”-like structures. The surfaces are very
rough and contain buried tri-coordinate atoms, in a similar manner as the interfaces produced by
fluorine reaction. Such “tree” structures, and the associated disorder, are likely to be involved in
Cl, reactions with other III-V surfaces, as well. The addition of the final Cl atom in forming
gaseous GaCl3 was identified as the rate-limiting step in the overall etching reaction.

There is a correspondence between the gas phase and surface products formed at different
temperatures, which allows for the microscopic reaction mechanism to be modeled. At low
temperatures, the gaseous products are the tri-chlorides and the surface products are the
intermediate mono- and di-chlorides. At higher temperatures, the gaseous products are GaCl and
As dimers and tetramers. Accordingly, we found that at temperatures between 500 and 600 K, the
surfaces are etched by Cly and the resultant surface layer is composed of elemental As and contains
no chlorine [6], similar to the high temperature fluorine reaction. For reaction at temperatures
above 600 K, stoichiometric etching is observed, which produces clean GaAs surfaces with a very
high degree of crystallinity. Reaction with Clp at elevated temperature therefore provides a new
method whereby clean, well-characterized and well-ordered GaAs surfaces can be reproducibly
prepared without the need for complex procedures, such as molecular beam epitaxy (MBE).

For the reaction of Clp with InAs(001), we compared adsorption on the In-terminated c(8x2)
surface to that of the As-terminated c(2x8) structure [10]. Although the largest reaction occurs
with the element that terminates the surface, Cly does in fact react with both elements. From this,
we conclude that the reaction is very similar to that of Cly with GaAs, in that (1) substrate bonds are
broken, i.e., etching can occur at room temperature, and (2) the details of the reaction depend on the
initial surface stoichiometry.

Todine can also etch III-V semiconductors, and has been proposed for use as a more “gentle”
etchant than chlorine. We investigated the reaction of I with GaAs, InAs and InSb (001) surfaces.
For low exposures at room temperature, Iy forms very highly ordered 1x1 structures [3-5]. We
investigated the dispersion of the surface electronic states of these structures [5], the chemical
reactions of I with the substrates [3], and the order within the iodine overlayers [4]. The ordered
structures involve minimal disruption of the substrate, as iodine simply bonds to the outermost
surface atoms. The 1x1 ordered overlayers have a state located at ~4.4 eV below the valence band
maximum, which shows a dispersion within a 1x1 surface Brillouin zone, and passes through an
open lens in the projected bulk density of states [5]. Both I 4d SXPS spectra and STM images
collected from the ordered surfaces show two types of iodine, which may be related to iodine bound
to broken and unbroken surface dimer atoms [4]. When the iodine-covered surfaces are annealed,
the group III element is preferentially etched, producing a group V-terminated surface. This result
thus suggests a means whereby a single atomic layer can be removed via a surface chemical
reaction. This “atomic layer etching” process can be exploited to produce certain surface
structures that previously required the use of MBE.

It has been observed that some ITI-V surfaces spontaneously etch upon adsorption, while others
form ordered overlayers. A careful study, in which we compared I reaction with two different
InAs(001) reconstructions, has lead to a microscopic model of halogen/III-V reactions [11]. The
utility of this experiment was that a single material could be prepared so that it either passivated or
etched, depending on the details of the structure. We found that on the In-terminated c(8%2)
surface, a sharp 1x1 LEED pattern formed following I, exposure, indicating that the surface was
highly-ordered. SXPS indicated that all of the iodine was singly coordinated to surface In atoms,
i.e., none was bonded to As. On the As-terminated c(2x8) surface, on the other hand, the surface
became highly disordered by the reaction, and iodine was bonded to both In and As.




The microscopic model that explains these observations is based on the assumption that iodine will
preferentially react with surface group III (i.e., In) atoms, as opposed to group V elements. On the
well-ordered clean surface, the group III atoms have an empty orbital extending into the vacuum,
while the group V atoms have a filled orbital, i.e., a lone pair of electrons. There will be some
repulsion between the lone pair of a group V atom and the valence electrons of the incoming Iy,
while there will be attraction between the unoccupied orbital of a group IIl atom and the I
molecule. For the In-terminated surface, reaction therefore occurs with the outermost atoms and the
structure remains well-ordered. On the group V-terminated surface, however, the reaction most
likely occurs at a group V element located in the second layer in one of the missing rows. When an
iodine bond is formed with a second layer atom, it withdraws charge from the first layer group V
atom. This depletes the surface lone pair, thereby making the outermost group V more reactive to
I,. Thus, after sufficient reaction to observe iodine bonding with SXPS, I is attached to both In and
As. This scenario enables substrate bonds to weaken and to then break, which ultimately leads to
etching. Thus, this microscopic model can explain why halogen reaction produces an ordered
overlayer with some surfaces, while other surfaces become disordered and etch.

In summary, an experimental program probing the basic surface chemical reactions of halogens
with III-V semiconductor surfaces has been completed. Much has been learned about the surface
chemical products formed, the kinetics of the reactions, and the structures of the resulting surfaces.
In addition, we learned how to exploit these reactions for the production of novel surface structures.
Finally, a microscopic understanding of these reactions has begun to form.
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